13205 measured reflections

 $R_{\rm int} = 0.060$ 

3022 independent reflections

1574 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## N-(4-tert-Butylbenzyl)phthalimide

Jiang-Sheng Li,<sup>a</sup>\* Jim Simpson<sup>b</sup> and Xun Li<sup>a</sup>

<sup>a</sup>School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: js\_li@yahoo.com.cn

Received 30 June 2009; accepted 30 June 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.051; wR factor = 0.139; data-to-parameter ratio = 13.0.

The molecule of the title compound [systematic name: 2-(4tert-butylbenzyl)isoindoline-1,3-dione],  $C_{19}H_{19}NO_2$ , is Vshaped with a dihedral angle of 74.15 (7)° between the mean planes of the phthalimide unit and the benzene ring. The methyl groups of the tert-butyl substituent are disordered over two sets of positions, with an occupancy ratio of 0.700 (4):0.300 (4). In the crystal, intermolecular C-H···O hydrogen bonds link adjacent molecules into centrosymmetric dimers. An additional weak C-H···O contact, together with weak C-H··· $\pi$  and  $\pi$ - $\pi$  interactions [centroid-centroid distance = 3.961 (2) Å] generate a three-dimensional network.

#### **Related literature**

For the synthesis, see: Xin *et al.* (2006). For related structures, see: Chen *et al.* (2006); Lü *et al.* (2006); Warzecha *et al.* (2006*a*,*b*,*c*); Xin *et al.* (2006).For bond-length data, see: Allen *et al.* (1987).



## Experimental

Crystal data

 $C_{19}H_{19}NO_2$   $M_r = 293.35$ Trigonal,  $R\overline{3}$  a = 37.576 (7) Å c = 6.2970 (16) Å V = 7700 (3) Å<sup>3</sup> Z = 18Mo K $\alpha$  radiation  $\mu = 0.07 \text{ mm}^{-1}$ T = 294 K $0.24 \times 0.22 \times 0.18 \text{ mm}$  Data collection

```
Bruker SMART 1K CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.983, T<sub>max</sub> = 0.987
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 117 restraints $wR(F^2) = 0.139$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ 3022 reflections $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$ 232 parameters $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$ 

Table 1

Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $C6-H6A\cdots O2^i$ 0.93         2.41         3.297 (3)         160 $C9-H9B\cdots O1^{ii}$ 0.97         2.71         3.135 (3)         107 $C5-H5A\cdots Cg3^{iii}$ 0.93         2.94         3.771 (4)         149 |                                                                                      |                      |                         |                                     |                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|-------------------------|-------------------------------------|--------------------------------------|
| $C6-H6A\cdots O2^i$ $0.93$ $2.41$ $3.297$ (3) $160$ $C9-H9B\cdots O1^{ii}$ $0.97$ $2.71$ $3.135$ (3) $107$ $C5-H5A\cdots Cg^{3ii}$ $0.93$ $2.94$ $3.771$ (4) $149$                                                                                                            | $D - H \cdots A$                                                                     | $D-\mathrm{H}$       | $H \cdot \cdot \cdot A$ | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|                                                                                                                                                                                                                                                                               | $C6 - H6A \cdots O2^{i}$<br>$C9 - H9B \cdots O1^{ii}$<br>$C5 - H5A \cdots Cg3^{iii}$ | 0.93<br>0.97<br>0.93 | 2.41<br>2.71<br>2.94    | 3.297 (3)<br>3.135 (3)<br>3.771 (4) | 160<br>107<br>149                    |

Symmetry codes: (i)  $-x + \frac{5}{3}, -y + \frac{1}{3}, -z + \frac{2}{3},$  (ii)  $-x + y + \frac{4}{3}, -x + \frac{2}{3}, z + \frac{2}{3},$  (iii)  $-x + \frac{1}{3}, -y + \frac{2}{3}, -z + \frac{2}{3}, Cg3$  is the centroid of the C10–C15 benzene ring.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2009).

This project was supported by the Changsha University of Science and Technology Talent Fund (Project No. 1004214)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5020).

#### References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, P., Zhang, L. & Li, D. (2006). Acta Cryst. E62, 04188-04189.
- Lü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. & Wang, P. (2006). Acta Cryst. E62, 02965–02966.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367– o2368.
- Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o2367o2368.
- Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006c). Acta Cryst. E62, o5450o5452.
- Westrip, S. P. (2009). publCIF. In preparation.
- Xin, C.-W., Li, J.-S., Guo, Z.-X. & Chen, L.-G. (2006). Acta Cryst. E62, o1273o1275.

Acta Cryst. (2009). E65, o1779 [doi:10.1107/S1600536809025343]

## N-(4-tert-Butylbenzyl)phthalimide

### J.-S. Li, J. Simpson and X. Li

#### Comment

The molecular structure of (I) (Fig. 1) shows that the phthalimide ring system is almost planar, with the dihedral angle between the C2···C7 and N1/C1/C2/C7/C8 rings 1.26 (15) °. The molecule adopts a V-shape with a dihedral angle between the mean planes of the phthalimide group and the benzene ring of 74.12 (7) Å. Bond distances within the molecule are normal (Allen *et al.*, 1987) and similar to those observed in comparable structures (Chen *et al.*, 2006; Lü *et al.*, 2006; Warzecha *et al.*, 2006a,b,c; Xin *et al.*, 2006).

In the crystal structure, complementary intermolecular C6—H6a···O2 hydrogen bonds link molecules into dimers (Table 1, Fig. 2). Additional weak C8—H9B···O1 and C—H··· $\pi$  contacts together with  $\pi$ - $\pi$  interactions between the six-membered phthalimide rings (centroid-centroid separation 3.961 (2) Å; 1/3 - *x*,2/3 - *y*,2/3 - *z*) generate an extensive three-dimensional network structure, Fig. 3.

#### **Experimental**

The title compound was obtained by a literature method (Xin, *et al.*, 2006). Colourless blocks of (I) were grown from an ethanol solution.

#### Refinement

The H atoms were positioned geometrically (C—H = 0.93-0.97Å) and refined as riding with  $U_{iso}(H) = 1.2 U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ . The three methyl groups of the *tert*-butyl group are disordered over two positions with an occupancy ratio of 0.700 (4):0.300 (4). Restraints were applied to the atomic displacement parameters and interatomic distances for these atoms. *PLATON* (Spek, 2009) reports a solvent accessible voids of total area 164.0 Å<sup>3</sup> in the structure. However, the low residual electron density does not suggest additional solvent in the structure. This was confirmed using the SQUEEZE procedure (Spek, 2009).

#### **Figures**



Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radius. Only the major disorder component of the disordered methyl groups is shown.



Fig. 2. Centrosymmetric dimers of (I) formed by C—H…O hydrogen bonds drawn as dashed



Fig. 3. Crystal packing of (I) viewed down the *c* axis. Hydrogen bonds are drawn as dashed lines.

## 2-(4-tert-butylbenzyl)isoindoline-1,3-dione

| Crystal data                                    |                                                       |
|-------------------------------------------------|-------------------------------------------------------|
| C <sub>19</sub> H <sub>19</sub> NO <sub>2</sub> | Z = 18                                                |
| $M_r = 293.35$                                  | $F_{000} = 2808$                                      |
| Trigonal, $R\overline{3}$                       | $D_{\rm x} = 1.139 {\rm ~Mg~m}^{-3}$                  |
| Hall symbol: -R 3                               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| <i>a</i> = 37.576 (7) Å                         | Cell parameters from 2125 reflections                 |
| b = 37.576 (7)  Å                               | $\theta = 2.9 - 20.3^{\circ}$                         |
| <i>c</i> = 6.2970 (16) Å                        | $\mu = 0.07 \text{ mm}^{-1}$                          |
| $\alpha = 90^{\circ}$                           | T = 294  K                                            |
| $\beta = 90^{\circ}$                            | Block, colourless                                     |
| $\gamma = 120^{\circ}$                          | $0.24 \times 0.22 \times 0.18 \text{ mm}$             |
| $V = 7700 (3) \text{ Å}^3$                      |                                                       |
|                                                 |                                                       |

## Data collection

| Bruker SMART 1K CCD area-detector diffractometer               | 3022 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1574 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.060$                  |
| T = 294  K                                                     | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 1.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -44 \rightarrow 44$               |
| $T_{\min} = 0.983, T_{\max} = 0.987$                           | $k = -44 \rightarrow 40$               |
| 13205 measured reflections                                     | $l = -7 \rightarrow 5$                 |

### Refinement

| Secondary atom site location: difference Fourier map                     |
|--------------------------------------------------------------------------|
| Hydrogen site location: inferred from neighbouring sites                 |
| H-atom parameters constrained                                            |
| $w = 1/[\sigma^2(F_0^2) + (0.067P)^2]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| $(\Delta/\sigma)_{\rm max} = 0.007$                                      |
| $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$                    |
| $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$                     |
|                                                                          |

117 restraints

Extinction correction: SHELXL97 (Sheldrick, 2008),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ 

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0015 (3)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|          | r                |                  | -               | II. */II           | $O_{22}$ (<1) |
|----------|------------------|------------------|-----------------|--------------------|---------------|
| NT1      | л<br>0.74570 (С) | y<br>0.07(00.(() | 2<br>0.8220 (2) | $O_{1SO} / O_{eq}$ | 0             |
| NI<br>Ol | 0.74578(6)       | 0.07689 (6)      | 0.8339 (3)      | 0.0624 (6)         |               |
| 01       | 0.71269 (6)      | 0.06224 (6)      | 0.5108 (3)      | 0.0914 (7)         |               |
| 02       | 0.78710(6)       | 0.11049 (6)      | 1.1186 (3)      | 0.0878 (6)         |               |
| Cl       | 0.73592 (7)      | 0.08689 (8)      | 0.6388 (4)      | 0.0636 (7)         |               |
| C2       | 0.75936 (7)      | 0.13258 (7)      | 0.6282 (4)      | 0.0592 (6)         |               |
| C3       | 0.76152 (8)      | 0.15895 (9)      | 0.4692 (4)      | 0.0738 (8)         |               |
| H3A      | 0.7463           | 0.1493           | 0.3448          | 0.089*             |               |
| C4       | 0.78736 (9)      | 0.20036 (10)     | 0.5043 (5)      | 0.0857 (9)         |               |
| H4A      | 0.7897           | 0.2190           | 0.4003          | 0.103*             |               |
| C5       | 0.80973 (9)      | 0.21491 (9)      | 0.6882 (5)      | 0.0840 (9)         |               |
| H5A      | 0.8267           | 0.2431           | 0.7061          | 0.101*             |               |
| C6       | 0.80741 (8)      | 0.18844 (9)      | 0.8472 (4)      | 0.0742 (8)         |               |
| H6A      | 0.8225           | 0.1981           | 0.9720          | 0.089*             |               |
| C7       | 0.78172 (7)      | 0.14702 (8)      | 0.8123 (4)      | 0.0586 (6)         |               |
| C8       | 0.77353 (8)      | 0.11164 (8)      | 0.9466 (4)      | 0.0637 (7)         |               |
| C9       | 0.73037 (8)      | 0.03495 (8)      | 0.9110 (4)      | 0.0761 (8)         |               |
| H9A      | 0.7041           | 0.0167           | 0.8446          | 0.091*             |               |
| H9B      | 0.7261           | 0.0341           | 1.0632          | 0.091*             |               |
| C10      | 0.76013 (7)      | 0.02033 (7)      | 0.8621 (4)      | 0.0633 (7)         |               |
| C11      | 0.76087 (8)      | 0.00447 (8)      | 0.6666 (5)      | 0.0779 (8)         |               |
| H11A     | 0.7418           | 0.0017           | 0.5640          | 0.093*             |               |
| C12      | 0.78922 (8)      | -0.00735 (8)     | 0.6194 (4)      | 0.0769 (8)         |               |
| H12A     | 0.7887           | -0.0181          | 0.4857          | 0.092*             |               |
| C13      | 0.81833 (8)      | -0.00375 (7)     | 0.7641 (4)      | 0.0648 (7)         |               |
| C14      | 0.81715 (9)      | 0.01207 (8)      | 0.9605 (4)      | 0.0775 (8)         |               |
| H14A     | 0.8363           | 0.0151           | 1.0630          | 0.093*             |               |
| C15      | 0.78852 (9)      | 0.02358 (8)      | 1.0095 (4)      | 0.0755 (8)         |               |
| H15A     | 0.7885           | 0.0337           | 1.1443          | 0.091*             |               |
| C16      | 0.84998 (8)      | -0.01645(8)      | 0.7120 (4)      | 0.0776 (8)         |               |
|          |                  |                  |                 |                    |               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C17  | 0.85716 (17) | -0.01769 (19) | 0.4734 (6)  | 0.1105 (16) | 0.700 (4) |
|------|--------------|---------------|-------------|-------------|-----------|
| H17A | 0.8317       | -0.0366       | 0.4056      | 0.166*      | 0.700 (4) |
| H17B | 0.8769       | -0.0265       | 0.4508      | 0.166*      | 0.700 (4) |
| H17C | 0.8674       | 0.0092        | 0.4141      | 0.166*      | 0.700 (4) |
| C18  | 0.83567 (17) | -0.05907 (15) | 0.8010 (9)  | 0.1127 (16) | 0.700 (4) |
| H18A | 0.8094       | -0.0782       | 0.7410      | 0.169*      | 0.700 (4) |
| H18B | 0.8332       | -0.0586       | 0.9526      | 0.169*      | 0.700 (4) |
| H18C | 0.8553       | -0.0674       | 0.7657      | 0.169*      | 0.700 (4) |
| C19  | 0.89213 (15) | 0.01404 (19)  | 0.8087 (9)  | 0.1309 (19) | 0.700 (4) |
| H19A | 0.8908       | 0.0112        | 0.9605      | 0.196*      | 0.700 (4) |
| H19B | 0.8992       | 0.0416        | 0.7715      | 0.196*      | 0.700 (4) |
| H19C | 0.9126       | 0.0083        | 0.7544      | 0.196*      | 0.700 (4) |
| C17' | 0.8277 (4)   | -0.0580 (3)   | 0.595 (2)   | 0.125 (3)   | 0.300 (4) |
| H17D | 0.8080       | -0.0786       | 0.6891      | 0.188*      | 0.300 (4) |
| H17E | 0.8474       | -0.0657       | 0.5511      | 0.188*      | 0.300 (4) |
| H17F | 0.8138       | -0.0556       | 0.4731      | 0.188*      | 0.300 (4) |
| C18' | 0.8704 (4)   | -0.0220 (4)   | 0.9090 (15) | 0.106 (3)   | 0.300 (4) |
| H18D | 0.8506       | -0.0456       | 0.9871      | 0.160*      | 0.300 (4) |
| H18E | 0.8806       | 0.0020        | 0.9970      | 0.160*      | 0.300 (4) |
| H18F | 0.8927       | -0.0260       | 0.8667      | 0.160*      | 0.300 (4) |
| C19' | 0.8826 (3)   | 0.0180 (3)    | 0.578 (2)   | 0.115 (3)   | 0.300 (4) |
| H19D | 0.8698       | 0.0235        | 0.4604      | 0.172*      | 0.300 (4) |
| H19E | 0.9015       | 0.0100        | 0.5249      | 0.172*      | 0.300 (4) |
| H19F | 0.8972       | 0.0423        | 0.6628      | 0.172*      | 0.300 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| N1  | 0.0547 (13) | 0.0568 (13) | 0.0710 (14) | 0.0243 (11) | -0.0037 (10) | 0.0023 (11)  |
| 01  | 0.0771 (13) | 0.0802 (13) | 0.0980 (15) | 0.0252 (11) | -0.0323 (11) | -0.0139 (11) |
| O2  | 0.0980 (15) | 0.0980 (14) | 0.0664 (13) | 0.0482 (12) | -0.0134 (11) | -0.0046 (10) |
| C1  | 0.0501 (15) | 0.0666 (18) | 0.0722 (18) | 0.0279 (14) | -0.0057 (13) | -0.0020 (14) |
| C2  | 0.0509 (15) | 0.0649 (17) | 0.0670 (17) | 0.0330 (13) | 0.0004 (13)  | -0.0011 (14) |
| C3  | 0.0691 (18) | 0.082 (2)   | 0.0766 (19) | 0.0431 (17) | -0.0010 (14) | 0.0084 (16)  |
| C4  | 0.078 (2)   | 0.080 (2)   | 0.105 (2)   | 0.0436 (18) | 0.0076 (18)  | 0.0199 (17)  |
| C5  | 0.072 (2)   | 0.0623 (18) | 0.116 (3)   | 0.0321 (16) | 0.0029 (18)  | 0.0002 (19)  |
| C6  | 0.0673 (18) | 0.0686 (19) | 0.088 (2)   | 0.0349 (15) | -0.0063 (14) | -0.0103 (16) |
| C7  | 0.0508 (15) | 0.0620 (17) | 0.0668 (17) | 0.0310 (13) | 0.0014 (12)  | -0.0037 (13) |
| C8  | 0.0624 (16) | 0.0716 (18) | 0.0616 (17) | 0.0369 (15) | -0.0027 (13) | -0.0051 (15) |
| C9  | 0.0628 (17) | 0.0650 (17) | 0.092 (2)   | 0.0255 (14) | 0.0088 (14)  | 0.0128 (14)  |
| C10 | 0.0587 (16) | 0.0505 (15) | 0.0716 (19) | 0.0204 (13) | 0.0006 (13)  | 0.0080 (12)  |
| C11 | 0.0663 (18) | 0.0742 (19) | 0.082 (2)   | 0.0265 (15) | -0.0184 (14) | -0.0111 (15) |
| C12 | 0.077 (2)   | 0.0720 (18) | 0.0724 (19) | 0.0298 (16) | -0.0104 (15) | -0.0166 (14) |
| C13 | 0.0677 (17) | 0.0519 (15) | 0.0676 (17) | 0.0244 (13) | 0.0006 (14)  | 0.0029 (12)  |
| C14 | 0.095 (2)   | 0.087 (2)   | 0.0638 (18) | 0.0552 (18) | -0.0137 (14) | 0.0018 (14)  |
| C15 | 0.099 (2)   | 0.0821 (19) | 0.0583 (17) | 0.0551 (18) | -0.0020 (15) | 0.0044 (13)  |
| C16 | 0.0807 (18) | 0.0794 (17) | 0.0765 (17) | 0.0429 (15) | 0.0052 (13)  | 0.0025 (14)  |
| C17 | 0.120 (3)   | 0.137 (3)   | 0.092 (3)   | 0.078 (3)   | 0.021 (2)    | 0.005 (2)    |

| C18             | 0.131 (3)     | 0.106 (3) | 0.130 (3) | 0.081 (3)  | 0.026 (3) | 0.029 (3)  |
|-----------------|---------------|-----------|-----------|------------|-----------|------------|
| C19             | 0.096 (3)     | 0.148 (4) | 0.144 (4) | 0.057 (3)  | 0.003 (3) | -0.036 (3) |
| C17'            | 0.124 (5)     | 0.123 (5) | 0.132 (5) | 0.065 (4)  | 0.006 (4) | -0.021 (4) |
| C18'            | 0.112 (5)     | 0.113 (5) | 0.113 (5) | 0.071 (4)  | 0.004 (4) | 0.014 (4)  |
| C19'            | 0.098 (4)     | 0.122 (5) | 0.118 (5) | 0.052 (4)  | 0.021 (4) | 0.012 (4)  |
|                 |               |           |           |            |           |            |
| Geometric parar | meters (Å, °) |           |           |            |           |            |
| N1—C8           |               | 1.391 (3) | C14       | —C15       | 1         | .380 (3)   |
| N1—C1           |               | 1.388 (3) | C14       | —H14A      | 0         | .9300      |
| N1—C9           |               | 1.464 (3) | C15-      | —H15A      | 0         | .9300      |
| 01—C1           |               | 1.209 (3) | C16       | —C19'      | 1         | .520 (7)   |
| O2—C8           |               | 1.207 (3) | C16       | —C18       | 1         | .519 (4)   |
| C1—C2           |               | 1.488 (3) | C16       | —C18'      | 1         | .526 (7)   |
| С2—С7           |               | 1.374 (3) | C16       | —C17       | 1         | .531 (4)   |
| C2—C3           |               | 1.382 (3) | C16       | —C17'      | 1         | .539 (7)   |
| C3—C4           |               | 1.379 (4) | C16       | —C19       | 1         | .542 (5)   |
| С3—НЗА          |               | 0.9300    | C17-      | —H17A      | 0         | .9600      |
| C4—C5           |               | 1.374 (4) | C17-      | —H17B      | 0         | .9600      |
| C4—H4A          |               | 0.9300    | C17-      | —H17C      | 0         | .9600      |
| C5—C6           |               | 1.383 (4) | C18-      | —H18A      | 0         | .9600      |
| C5—H5A          |               | 0.9300    | C18-      | —H18B      | 0         | .9600      |
| C6—C7           |               | 1.378 (3) | C18-      | —H18C      | 0         | .9600      |
| C6—H6A          |               | 0.9300    | C19-      | —H19A      | 0         | .9600      |
| С7—С8           |               | 1.473 (3) | C19-      | —H19B      | 0         | .9600      |
| C9—C10          |               | 1.504 (3) | C19-      | —Н19С      | 0         | .9600      |
| С9—Н9А          |               | 0.9700    | C17       | '—H17D     | 0         | .9600      |
| С9—Н9В          |               | 0.9700    | C17       | '—H17E     | 0         | .9600      |
| C10-C15         |               | 1.373 (3) | C17       | '—H17F     | 0         | .9600      |
| C10-C11         |               | 1.374 (3) | C18       | '—H18D     | 0         | .9600      |
| C11—C12         |               | 1.376 (4) | C18       | '—H18E     | 0         | .9600      |
| C11—H11A        |               | 0.9300    | C18       | '—H18F     | 0         | .9600      |
| C12—C13         |               | 1.377 (3) | C19       | '—H19D     | 0         | .9600      |
| C12—H12A        |               | 0.9300    | C19       | '—H19E     | 0         | .9600      |
| C13—C14         |               | 1.383 (3) | C19       | '—H19F     | 0         | .9600      |
| C13—C16         |               | 1.522 (4) |           |            |           |            |
| C8—N1—C1        |               | 111.9 (2) | C18-      |            | 5         | 9.5 (5)    |
| C8—N1—C9        |               | 123.3 (2) | C19       |            | 1         | 06.1 (5)   |
| C1—N1—C9        |               | 124.7 (2) | C18-      |            | 1         | 09.3 (3)   |
| 01—C1—N1        |               | 124.8 (2) | C18       |            | 1         | 13.1 (5)   |
| O1—C1—C2        |               | 129.7 (2) | C19       |            | 5         | 3.2 (5)    |
| N1—C1—C2        |               | 105.5 (2) | C18-      |            | 1         | 07.8 (3)   |
| С7—С2—С3        |               | 121.5 (2) | C18       |            | 1         | 33.2 (5)   |
| C7—C2—C1        |               | 108.1 (2) | C13-      |            | 1         | 13.5 (3)   |
| C3—C2—C1        |               | 130.4 (2) | C19       | '—C16—C17' | 1         | 13.4 (7)   |
| C4—C3—C2        |               | 116.7 (3) | C18-      |            | 5         | 1.7 (5)    |
| C4—C3—H3A       |               | 121.7     | C18       | '—C16—C17' | 1         | 07.7 (7)   |
| С2—С3—НЗА       |               | 121.7     | C13-      |            | 1         | 07.9 (5)   |
| С5—С4—С3        |               | 122.0 (3) | C17-      |            | 6         | 1.0 (5)    |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)<br>5)<br>(3)<br>(3)<br>(5)                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)<br>(3)<br>(3)<br>(5)                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)<br>(3)<br>(5)                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)<br>(5)                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (5)                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| C2C7C8108.5 (2)C16C17H17C109.4C6C7C8129.8 (2)H17AC17H17C109.4O2C8N1123.8 (2)H17BC17H17C109.4O2C8C7130.3 (2)C16C18H18A109.4N1C9C10111.05 (19)H18AC18H18B109.4N1C9H9A109.4C16C18H18C109.5C10C9H9A109.4C16C18H18C109.5N1C9H9B109.4H18BC18H18C109.5C10C9H9B109.4H18BC18H18C109.5C10C9H9B109.4C16C19H19A109.5C15C10C11117.5 (3)C16C19H19B109.5C15C10C9121.1 (3)C16C17H17D109.5C15C10C9121.5 (2)C16C17'H17E109.5C10C11H11A119.3H17DC17'H17F109.5C10C11H11A119.3H17DC17'-H17F109.5C11C12C13122.0 (3)H17EC17'-H17F109.5C13C12H12A119.0C16C18'H18D109.5C13C12C13122.2 (2)C16C18'H18E109.5C13C12H12A119.0C16C18'H18E109.5C13C13C14116.0 (3)H18DC18'H18F109.5C14C13C16121.7 (2)H18EC18'H18F109.5C15C14H14A118.9C16C18'H18F109.5C15C14H14A118.9C16C19'-H19D109.5                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| 02-C8-N1 $123.8$ (2) $H17B-C17-H17C$ $109.2$ $02-C8-C7$ $130.3$ (2) $C16-C18-H18A$ $109.2$ $N1-C8-C7$ $106.0$ (2) $C16-C18-H18B$ $109.2$ $N1-C9-C10$ $111.05$ (19) $H18A-C18-H18B$ $109.2$ $N1-C9-H9A$ $109.4$ $C16-C18-H18C$ $109.2$ $C10-C9-H9A$ $109.4$ $C16-C18-H18C$ $109.2$ $C10-C9-H9B$ $109.4$ $H18B-C18-H18C$ $109.2$ $C10-C9-H9B$ $109.4$ $C16-C19-H19A$ $109.2$ $C10-C9-H9B$ $109.4$ $C16-C19-H19A$ $109.2$ $C15-C10-C11$ $117.5$ (3) $C16-C19-H19B$ $109.2$ $C15-C10-C9$ $121.1$ (3) $C16-C17-H17D$ $109.2$ $C15-C10-C9$ $121.5$ (2) $C16-C17'-H17E$ $109.2$ $C10-C11-C12$ $121.3$ (2) $H17D-C17'-H17E$ $109.2$ $C10-C11-H11A$ $119.3$ $C16-C18'-H18D$ $109.2$ $C11-C12-C13$ $122.0$ (3) $H17E-C17'-H17F$ $109.2$ $C12-C13-C14$ $119.0$ $C16-C18'-H18E$ $109.2$ $C12-C13-C16$ $122.2$ (2) $C16-C18'-H18E$ $109.2$ $C12-C13-C16$ $122.2$ (2) $C16-C18'-H18F$ $109.2$ $C15-C14-C13$ $122.2$ (2) $H18D-C18'-H18F$ $109.2$ $C15-C14-H14A$ $118.9$ $C16-C19'-H19D$ $109.2$ < |                                                                                                    |
| 02-C8-C7 $130.3$ (2) $C16-C18-H18A$ $109.2$ $N1-C8-C7$ $106.0$ (2) $C16-C18-H18B$ $109.2$ $N1-C9-C10$ $111.05$ (19) $H18A-C18-H18B$ $109.2$ $N1-C9-H9A$ $109.4$ $C16-C18-H18C$ $109.2$ $C10-C9-H9A$ $109.4$ $H18A-C18-H18C$ $109.2$ $N1-C9-H9B$ $109.4$ $H18B-C18-H18C$ $109.2$ $C10-C9-H9B$ $109.4$ $C16-C19-H19A$ $109.2$ $C10-C9-H9B$ $109.4$ $C16-C19-H19A$ $109.2$ $C15-C10-C11$ $117.5$ (3) $C16-C19-H19B$ $109.2$ $C15-C10-C9$ $121.1$ (3) $C16-C17-H17D$ $109.2$ $C15-C10-C9$ $121.5$ (2) $C16-C17'-H17D$ $109.2$ $C10-C11-C12$ $121.3$ (2) $H17D-C17'-H17E$ $109.2$ $C10-C11-H11A$ $119.3$ $C16-C18'-H18D$ $109.2$ $C11-C12-C13$ $122.0$ (3) $H17E-C17'-H17F$ $109.2$ $C12-C13-C14$ $119.0$ $C16-C18'-H18D$ $109.2$ $C12-C13-C16$ $122.2$ (2) $C16-C18'-H18F$ $109.2$ $C15-C14-C13$ $122.2$ (2) $H18D-C18'-H18F$ $109.2$ $C15-C14-H14A$ $118.9$ $C16-C19'-H19D$ $109.2$                                                  |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| C10—C9—H9B109.4C16—C19—H19A109.4H9A—C9—H9B108.0C16—C19—H19B109.4C15—C10—C11117.5 (3)C16—C19—H19C109.4C15—C10—C9121.1 (3)C16—C17—H17D109.5C11—C10—C9121.5 (2)C16—C17'—H17E109.5C10—C11—C12121.3 (2)H17D—C17'—H17E109.5C10—C11—H11A119.3C16—C17'—H17F109.5C11—C12—C13122.0 (3)H17D—C17'—H17F109.5C13—C12—H12A119.0C16—C18'—H18D109.5C12—C13—C14116.0 (3)H18D—C18'—H18E109.5C14—C13—C16122.2 (2)C16—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |
| H9A—C9—H9B108.0C16—C19—H19B109.5C15—C10—C11117.5 (3)C16—C19—H19C109.5C15—C10—C9121.1 (3)C16—C17'—H17D109.5C11—C10—C9121.5 (2)C16—C17'—H17E109.5C10—C11—C12121.3 (2)H17D—C17'—H17E109.5C10—C11—H11A119.3C16—C17'—H17F109.5C11—C12—C13122.0 (3)H17D—C17'—H17F109.5C13—C12—H12A119.0C16—C18'—H18D109.5C12—C13—C14116.0 (3)H18D—C18'—H18E109.5C14—C13—C16122.2 (2)C16—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |
| C15—C10—C11       117.5 (3)       C16—C19—H19C       109.5         C15—C10—C9       121.1 (3)       C16—C17'—H17D       109.5         C11—C10—C9       121.5 (2)       C16—C17'—H17E       109.5         C10—C11—C12       121.3 (2)       H17D—C17'—H17E       109.5         C10—C11—H11A       119.3       C16—C17'—H17F       109.5         C12—C11—H11A       119.3       C16—C17'—H17F       109.5         C11—C12—C13       122.0 (3)       H17D—C17'—H17F       109.5         C11—C12—H12A       119.0       C16—C18'—H18D       109.5         C12—C13—C14       119.0       C16—C18'—H18E       109.5         C12—C13—C16       122.2 (2)       C16—C18'—H18F       109.5         C14—C13—C16       121.7 (2)       H18D—C18'—H18F       109.5         C15—C14—H14A       118.9       C16—C18'—H18F       109.5                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| C11—C10—C9       121.5 (2)       C16—C17'—H17E       109.5         C10—C11—C12       121.3 (2)       H17D—C17'—H17E       109.5         C10—C11—H11A       119.3       C16—C17'—H17F       109.5         C12—C11—H11A       119.3       H17D—C17'—H17F       109.5         C11—C12—C13       122.0 (3)       H17E—C17'—H17F       109.5         C11—C12—H12A       119.0       C16—C18'—H18D       109.5         C12—C13—C14       119.0       C16—C18'—H18E       109.5         C12—C13—C16       122.2 (2)       C16—C18'—H18E       109.5         C14—C13—C16       121.7 (2)       H18D—C18'—H18F       109.5         C15—C14—C13       122.2 (2)       H18E—C18'—H18F       109.5         C15—C14—H14A       118.9       C16—C19'—H19D       109.5                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
| C10—C11—C12       121.3 (2)       H17D—C17'—H17E       109.5         C10—C11—H11A       119.3       C16—C17'—H17F       109.5         C12—C11—H11A       119.3       H17D—C17'—H17F       109.5         C11—C12—C13       122.0 (3)       H17E—C17'—H17F       109.5         C11—C12—H12A       119.0       C16—C18'—H18D       109.5         C12—C13—C14       116.0 (3)       H18D—C18'—H18E       109.5         C12—C13—C16       122.2 (2)       C16—C18'—H18F       109.5         C14—C13—C16       121.7 (2)       H18D—C18'—H18F       109.5         C15—C14—C13       122.2 (2)       H18E—C18'—H18F       109.5         C15—C14—H14A       118.9       C16—C19'—H19D       109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |
| C10—C11—H11A       119.3       C16—C17'—H17F       109.5         C12—C11—H11A       119.3       H17D—C17'—H17F       109.5         C11—C12—C13       122.0 (3)       H17E—C17'—H17F       109.5         C11—C12—H12A       119.0       C16—C18'—H18D       109.5         C13—C12—H12A       119.0       C16—C18'—H18E       109.5         C12—C13—C14       116.0 (3)       H18D—C18'—H18E       109.5         C14—C13—C16       122.2 (2)       C16—C18'—H18F       109.5         C15—C14—C13       122.2 (2)       H18D—C18'—H18F       109.5         C15—C14—H14A       118.9       C16—C19'—H19D       109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |
| C12—C11—H11A       119.3       H17D—C17'—H17F       109.5         C11—C12—C13       122.0 (3)       H17E—C17'—H17F       109.5         C11—C12—H12A       119.0       C16—C18'—H18D       109.5         C13—C12—H12A       119.0       C16—C18'—H18D       109.5         C12—C13—C14       116.0 (3)       H18D—C18'—H18E       109.5         C12—C13—C16       122.2 (2)       C16—C18'—H18F       109.5         C14—C13—C16       121.7 (2)       H18D—C18'—H18F       109.5         C15—C14—C13       122.2 (2)       H18E—C18'—H18F       109.5         C15—C14—H14A       118.9       C16—C19'—H19D       109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| C11—C12—C13122.0 (3)H17E—C17'—H17F109.5C11—C12—H12A119.0C16—C18'—H18D109.5C13—C12—H12A119.0C16—C18'—H18E109.5C12—C13—C14116.0 (3)H18D—C18'—H18E109.5C12—C13—C16122.2 (2)C16—C18'—H18F109.5C14—C13—C16121.7 (2)H18D—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |
| C11—C12—H12A119.0C16—C18'—H18D109.5C13—C12—H12A119.0C16—C18'—H18E109.5C12—C13—C14116.0 (3)H18D—C18'—H18E109.5C12—C13—C16122.2 (2)C16—C18'—H18F109.5C14—C13—C16121.7 (2)H18D—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |
| C13—C12—H12A119.0C16—C18'—H18E109.5C12—C13—C14116.0 (3)H18D—C18'—H18E109.5C12—C13—C16122.2 (2)C16—C18'—H18F109.5C14—C13—C16121.7 (2)H18D—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |
| C12—C13—C14116.0 (3)H18D—C18'—H18E109.5C12—C13—C16122.2 (2)C16—C18'—H18F109.5C14—C13—C16121.7 (2)H18D—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    |
| C12—C13—C16122.2 (2)C16—C18'—H18F109.5C14—C13—C16121.7 (2)H18D—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
| C14—C13—C16121.7 (2)H18D—C18'—H18F109.5C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |
| C15—C14—C13122.2 (2)H18E—C18'—H18F109.5C15—C14—H14A118.9C16—C19'—H19D109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |
| C15—C14—H14A 118.9 C16—C19'—H19D 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |
| C13—C14—H14A 118.9 C16—C19'—H19E 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |
| C10—C15—C14 120.9 (2) H19D—C19'—H19E 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |
| C10—C15—H15A 119.5 C16—C19'—H19F 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |
| C14—C15—H15A 119.5 H19D—C19'—H19F 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
| C19'—C16—C18 144.5 (5) H19E—C19'—H19F 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |
| C19'—C16—C18' 108.8 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
| C8—N1—C1—O1 179.5 (2) C8—N1—C9—C10 -83.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
| C9—N1—C1—O1 1.8 (4) C1—N1—C9—C10 94.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)                                                                                                |
| C8—N1—C1—C2 –0.8 (3) N1—C9—C10—C15 95.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3)<br>3)                                                                                          |
| C9—N1—C1—C2 –178.57 (19) N1—C9—C10—C11 –82.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)<br>3)<br>3)                                                                                    |
| O1—C1—C2—C7 –179.8 (3) C15—C10—C11—C12 –0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(3)</li> <li>3)</li> <li>(3)</li> </ul>                                                   |
| N1—C1—C2—C7 0.5 (2) C9—C10—C11—C12 177.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>(3)</li> <li>3)</li> <li>(3)</li> <li>(3)</li> <li>4)</li> </ul>                          |
| O1—C1—C2—C3 –1.3 (4) C10—C11—C12—C13 –0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>(3)</li> <li>3)</li> <li>(3)</li> <li>(4)</li> <li>(2)</li> </ul>                         |
| N1-C1-C2-C3 179.1 (2) C11-C12-C13-C14 0.6 (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>(3)</li> <li>3)</li> <li>(3)</li> <li>(4)</li> <li>(2)</li> <li>(4)</li> </ul>            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>(3)</li> <li>3)</li> <li>(3)</li> <li>(4)</li> <li>(2)</li> <li>(4)</li> <li>)</li> </ul> |

| C1—C2—C3—C4 | -178.0(2)  | C12-C13-C14-C15  | 0.1 (4)    |
|-------------|------------|------------------|------------|
| C2—C3—C4—C5 | -0.4 (4)   | C16—C13—C14—C15  | -179.8 (2) |
| C3—C4—C5—C6 | 0.2 (4)    | C11—C10—C15—C14  | 1.3 (4)    |
| C4—C5—C6—C7 | 0.0 (4)    | C9-C10-C15-C14   | -176.7 (2) |
| C3—C2—C7—C6 | -0.1 (4)   | C13-C14-C15-C10  | -1.1 (4)   |
| C1—C2—C7—C6 | 178.5 (2)  | C12-C13-C16-C19' | 78.0 (6)   |
| C3—C2—C7—C8 | -178.8 (2) | C14—C13—C16—C19' | -102.1 (6) |
| C1—C2—C7—C8 | -0.1 (2)   | C12-C13-C16-C18  | -98.6 (4)  |
| C5—C6—C7—C2 | 0.0 (4)    | C14—C13—C16—C18  | 81.3 (4)   |
| C5—C6—C7—C8 | 178.3 (2)  | C12-C13-C16-C18' | -162.8 (6) |
| C1—N1—C8—O2 | -178.6 (2) | C14—C13—C16—C18' | 17.1 (7)   |
| C9—N1—C8—O2 | -0.8 (4)   | C12-C13-C16-C17  | 21.7 (4)   |
| C1—N1—C8—C7 | 0.8 (3)    | C14—C13—C16—C17  | -158.4 (3) |
| C9—N1—C8—C7 | 178.6 (2)  | C12—C13—C16—C17' | -43.8 (7)  |
| C2—C7—C8—O2 | 179.0 (3)  | C14—C13—C16—C17' | 136.1 (6)  |
| C6—C7—C8—O2 | 0.5 (4)    | C12-C13-C16-C19  | 141.1 (4)  |
| C2—C7—C8—N1 | -0.4 (2)   | C14—C13—C16—C19  | -39.0 (4)  |
| C6—C7—C8—N1 | -178.9 (2) |                  |            |
|             |            |                  |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                             | <i>D</i> —Н             | Н…А                | $D \cdots A$ | D—H···A |
|-----------------------------------------------------------------------------------------------------|-------------------------|--------------------|--------------|---------|
| C6—H6A····O2 <sup>i</sup>                                                                           | 0.93                    | 2.41               | 3.297 (3)    | 160     |
| C9—H9B…O1 <sup>ii</sup>                                                                             | 0.97                    | 2.71               | 3.135 (3)    | 107     |
| C5—H5A····Cg3 <sup>iii</sup>                                                                        | 0.93                    | 2.94               | 3.771 (4)    | 149     |
| $\mathbf{C}_{\text{contrast of the standard}}$ $(\mathbf{i}) = \mathbf{i} + 5/2 = \mathbf{i} + 1/2$ | = 17/2. (ii) $= 11/2/2$ | -12/2 - 12/2 (:::) |              |         |

Symmetry codes: (i) -x+5/3, -y+1/3, -z+7/3; (ii) -x+y+4/3, -x+2/3, z+2/3; (iii) -x+1/3, -y+2/3, -z+2/3.

Fig. 1





Fig. 2

Fig. 3

